0180-大型轴齿轮专用机床设计【全套6张CAD图】0180-大型轴齿轮专用机床设计【全套6张CAD图】

收藏

编号:20180926222221841856 ?? 类型:共享资源 ?? 大小:836.21KB ?? 格式:RAR ?? 上传时间:2019-09-19
??
30
积分
关?键?词:
全套6张CAD图 大型 齿轮 专用 机床 设计 全套 cad
跳过导航链接。
折叠 0180-大型轴齿轮专用机床设计【全套6张CAD图】.rar0180-大型轴齿轮专用机床设计【全套6张CAD图】.rar
展开 0180-大型轴齿轮专用机床设计【全套6张CAD图】0180-大型轴齿轮专用机床设计【全套6张CAD图】

资源目录

文件预览区

资源描述:
摘要摘要:结合机电一体化的需要,设计以单片机作为控制系统的 X-Y 型工作台。 通过对 X-Y 型工作台机械结构设计和控制电路接口的设计,阐述了机电一体化 设计中的共性和关键技术。这种工作台通常与整机设计成一个整体,其形状, 尺寸,结构因机器类型不同而有较大差异,但其工作原理有着共同点。 关键词关键词:X-Y 数控十字滑台;机电一体化;单片机 Abstract : Combine mechanical-electrical integration’s need, design a Model X-Y workingbench with one-chip computer as the of the control system. Though describing the workingbench mechanical’s design of structure and interface of the control circuit to Model X-Y, have explained generality in the design of mechanical- electrical integration and its key technology. This kind of workingbench is usually designed with the complete machine into a whole , its form , size, there is a greater difference because types of the machine are different in the structure, but its operation principle has common point. Keywords: X-Y numerical control cross slippery platform; The mechanical-electrical integration; One-chip computer 计算机辅助制造计算机辅助制造 1.1.绪论绪论 当今的工业的竞争已经是真正意义上的国际市场竞争。 高效的运输网络建立 了一个我们每天都要参与的 “世界市场”。 对于任何工业化国家要参与这个市场竞 争,就必须采用一种适时的方式为其客户提供经济、优质的产品。将产品设计和过 程设计进行集成的重要性,在产品系统被怎么强调都不为过。但是, 即使一种设 计最终被落实, 制造业者一定愿意通过允许最后的工程设计变化,而没有通过影 响装运进度表,或者改变产品质量来适应他们的用户。 大多数美国的生产公司基于趋向计算机辅助设计(CAD)/计算机辅助制 (CAM)和CIM为他们的制造系统提供灵活性。今天,计算机用于制造已经很平 常。现在不仅为零件生产设计制造系统,而且为零件从一台机器运送到另一台机器 的命令顺序设计了制造系统,如图(1),它还包含一个经济区域的制造经济计划 在美国和其他国家,手工产品总是还有一些市场的,此外真正的工业产品对于特殊 的“one-of-a-kind”技术项目还是需要的。 “one-of-a-kind”通过大量的货 物来表明、各种各样的工业需要各种各样的加工方法。 有些系统将看起来像我们 的祖父母曾经工作过的工厂,而其它则呈现出一种未来派的情景。在后文中,我们 将展开讨论柔性制造系统。 Volume- production Per part Number High Low High Integrated Automation Technologies Transter Lines Dedicated Systems Flexible Systems Automated Cells Job Shops Variety-Part Numbers Per System 图(1) 2.2.柔性制造系统柔性制造系统 柔性制造系统(FMS)像人们通常知道的那样的,能使用一个可编程的制造 系统自动地生产各种各样的产品。 自从亨利·福特率先提出并且使流水生产线实 现现代化,我们就已经能自动执行多种生产的生产。 不过,改变这些系统甚至只 作较小的变动,这些产品的生产都会变得相当繁重。 当其他机器或者零部件要经 过修理或者废弃,以适应这种萧萧的变化,整个机器才可能被引进到系统。 在今 天的竞争性市场里,能适应客户的各种变化是很必要的。传统的制造系统以特征可 划分为以下两种: 1.加工车间类型系统能生产多种产品,但是费用高。 2.流水线能以合理费用生产能大量产品, 但是仅局限于几种不同零件的生产。 数控(NC)和机器人技术的时代已经来临,这为我们提供了在最小准备时间里, 使机器的程序重新调定。NC机床和机器人是重新可编程序的制造系统的基本物理 组成部分。 2.1.2.1.柔性制造系统的设备柔性制造系统的设备 2.1.12.1.1机床机床 为了满足柔性制造系统定义的要求,该系统的基本工艺应实现自动化。因为自 动化必须是可编程的,以适应不同的产品要求,而易于改变,以及通用机床必须执 行这些工艺。计算机数控(CNC)车削中心、计算机数控(CNC)加工中心、及机器 人工作站构成了这些设备。这些机器不仅仅是易于重新编程,同时也适应置于刀具 存储系统及刀具更换器中的不同刀具。通常CNC加工中心备有60多把或更多刀具 (铣刀、钻头、镗刀等)。对于CNC车削中心,备有12把或更多的刀具(右车刀、 左车刀、镗杆、钻头等)。书动机床的自动换刀器及刀库使它们对材料的工艺装备 作出自然的选择。 零件必须在加工站点之间自动化的移动,采用了数种不同的物料输送系统,把 这些零件从一个站点输送到另一个站点。物料输送系统的选择是数种系统特征函数。 首先,物料输送系统的选择必须适应零件(或许是零件的夹具)的负荷及批量。大 型的、重型的零件需要大型的、强力的输送系统,如滚子输送、导向小车、轨道驱 动车辆系统。构成的机床数量及机床布置也提供了另一种设计上的考虑。如果用单 一的物料输送机来运送零件到系统内的所有机床,则运输机的工作覆盖面至少必须 是和整个系统一样大。通常一台机器人定位于一两台机床或一个装卸站。一台输送 机或自动导向车可以扩大到数英里的工厂区域。物料输送也可以以即时的方式将零 件从一台机床输送到另一台机床。如果系统内的机床耗费大量的时间在等待输送零 件的到来,则其生产率是不会高地。如果有许多种零件包括在系统内,而且这些零 件要经常输送到机床上,物料系统要能够支持这些活动。通常由采用极快的输送装 置或靠平行地使用几种装置来实现。例如:用一台机器人支持一台机床,而不是用 一台机器人运送零件到系统内的所有机床。 2.1.22.1.2刀具及夹具刀具及夹具 用途多样性是柔性制造系统的关键,由此,在系统中使用的刀具必须能够支持 多种零件及产品的生产。在柔性制造系统中,使用专用的或成型刀具并不典型。使 用成型刀具得到轮廓,通常可以通过轮廓书空系统或标准的铣刀得到。标准的铣刀 可以用于各种不同的零件而不是只能加工单一的轮廓。使用任何专用刀具其利润和 成本的经济分析都是必须的,以确定最佳的刀具组合。然而,因书空机床仅有有限 数量的刀具可供存取,极少数的刀具应当包括在内。 柔性制造系统通常容易忽视的一个方面是所使用的夹具。因为夹具是系统中工 具的一部分。人们会争议这样一个事实,对系统中的夹具也应标准化。工件装在创 制出的“柔性夹具”中,这种仅在几年前才开始使用的夹具可以支持多种零件。许 多柔性制造系统的独特方面是零件装在夹具(或随行夹具)中而在系统中运动,夹 具做成相同的尺寸,这样物料输送系统可以专门化去输送单一的几何形体,零件精 确的定位在夹具上,同时随同夹具从一个站点运动大另一个站点。这种类型的夹具, 通常称为随行夹具。现在所应用的许多随行夹具都加工出标准的T型槽,同时使用 标准的夹具组件创建出适应于切削加工的零件的定位及夹紧的条件。 3.3.柔性制造系统的计算机控制柔性制造系统的计算机控制 3.13.1 FMSFMS构架构架 FMS是一个必须被通过一台计算机或者计算机网络控制的设备和过程的复杂的网 络。 为了使控制FMS的任务更易处理,系统通常被分成一个个基于任务的阶层。 已经逐步成的标准之一的是国家标准与技术局(NIST)工厂控制阶层。 (NIST以前叫 国家标准局, NBS.) 这个阶层由5 步组成, 在图(2)表示了系统由物质机器加 工设备,图(3)系统的最低的组成部分。 工作站设备恰好处于过程水平面存在并 且起着预防综合和设备接口的作用。 例如棘瓜固定设备和编程要素也是工作站的 一部分。 工作站通常提供人力机器接口和机器零件接口。 而脱机程序适合NC那 种易于AML给机器人工作的工作站水平。 小屋是在在机器之间的相互作用阶层的单位,并成为系统的一部分。 小屋控 制器提供了那些机器和物质处理系统之间的接口。 照此,小屋控制器负责系统的 排序和调度部分。车间水平的集成和多房间重现生成了存货清单的计划和管理。 Facility Shop Cell Workstation Equipment Information management Manufacturing engineering Production management Task management Resource allocation Batch management Scheduling Dispatching Setup Equipment tasking Takedown Machining Handling Measurement Figure 2 Control hierarchy used by the National Institute of Standards and Tec -hnology. Elements of the data driven c -ontrol function within the NIST Automat -ed Manufacturing Research Facilit(AMRF) architecture: the facility, shop, cell, workstion and equipment levels of control The AMRF Control Hierarchy 图(2) Facility D D A S Shop M D A S D D A S D D A S Cell Integrated Workstation Equipment Equipment B D A S B D A SS A D B S A D B Equipment Equipment S A D D Independent Workstation Current Masters (MDAS) Lengend: Main Network Subnetwork MDAS Control 图(3) 3.2 FMS安排和控制安排和控制 柔性制造系统,像其他制造系统一样,能区别出零件之间较大的复杂性。 这 复杂性不仅包括系统中机器的数量和确定的数量, 而且包括那些复杂性的部分和 控制要求的那些具体设备。一些FMS只要求有一个简单的可编程控制器就行了, 而其它的还要求有复杂的计算机控制系统。在以后的章节里,还要提出一些FMS 及其控制的例子。 最简单的FMS由一台处理器、装载/卸载区域和原料处理机(一个最简单的FMS 可以只由一台机器构成)。 这系统的操作包括了往下的一个传输装置。一旦零件被 装到机器上,机器人缩回到一个“安全的位置” ,然后机器开始加工。 虽然这是一个非常简单的系统,但是它例举了几种有趣的设计和必须考虑的控 制部件。如果在系统中,只有一个部分在运作,那么系统就只需要最小数量的开关 和传感器。系统所需要的是,所有传输带上的零件使用同样的方法定位。这还需要 使机器人每一次都用同样的定位方法能让把零件装在到数控机床上。在输送装置的 末端发现有零件已到达的时候,需要一个行程或者微开关。 Integrated Computer Aided Manufacturing 1.INTRODUCTION Today’s industry competes in a truly international marketplace. Efficient transportation networks have created a “world market” in which we participate on a daily basis. For any industrial country to compete in this market, it must have companies that provide economic high-quality products to their customers in a timely manner. The importance of integrating product design and process design to achieve a design for production system cannot be overemphasized. However, even once a design is finalized, manufacturing industries must be willing to accommodate their customers by allowing last-minute engineering-design changes without affecting shipping schedules or altering product quality. Most U.S.-based manufacturing companies look toward CAD/CAM and CIM to provide this flexibility in their manufacturing system . Today ,the use of computers in manufacturing is common . Manufacturing system are being designed that not only process parts automatically ,but also move the parts from machine to machine and sequence the ordering of operations in the system.( Figure 1) contains a plot of the economic regions of manufacturing. It should be noted that manual handcrafted goods will always have a market in the United States as well as abroad. This is also true of industrial products—there will continue to be a need for special one-of-a-kind items. The spectrum of one-of-a-kind goods through high-volume goods dictates that a variety of manufacturing methods be used to meet our various industrial needs. Some of these systems will look like the factories that our grandparents labored in, whereas others will take on a futuristic look. In the following sections, a discussion of flexible manufacturing systems is presented. Volume- production Per part Number High Low High Integrated Automation Technologies Transter Lines Dedicated Systems Flexible Systems Automated Cells Job Shops Variety-Part Numbers Per System Figure 1 Volume versus variety regions for economic manufacturing 2.FLEXIBLE MANUFACTURING SYSTEMS A flexible manufacturing system, or FMS as they are more commonly known, is a reprogram-able manufacturing system capable of producing a variety of products automatically. Since Henry Ford first introduced and modernized the transfer line, we have been able to perform a variety of manufacturing operations automatically. However, altering these systems to accommodate even minor changes in the product has been quite taxing. Whole machines might have to be introduced to the system while other machines or components are modified or retired to accommodate small changes in a product. In today’s competitive marketplace ,it is necessary to accommodate customer changes or the customer will find someone else who will accommodate the changes. Conventional manufacturing system s have been marked by one of two distinct features: 1. Job shop type systems were capable of producing a variety of product ,but at a high cost. 2. Transfer lines could produce large volumes of a product at a reasonable cost, but were limited to the production of one ,two, or very few different parts. The advent of numerical control (NC) and robotics has provided us with reprogramming capabilities at the machine level with minimum setup time. NC machines and robots provide the basic physical building blocks for re- programmable manufacturing systems. 2.1.FMS Equipment 2.1.1Machines In order to meet the requirements of the definition of an FMS, the basic processing in the system must be automated. Because automation must be programmable in order to accommodate a variety of product-processing requirements, easily alterable as well as versatile machines must perform the basic processing. For this reason, CNC turning centers, CNC machining centers, and robotic workstations comprise the majority of equipment in these systems. These machines are not only capable of being easily reprogrammed, but are also capable of accommodating a variety of tooling via a tool changer and tool-storage system. It is not unusual for a CNC machining center to contain to 12 or more tools (right-hand turning tools, left-hand turning tools ,boring bars, drills ,and so on ) . The automatic tool changer and storage capabilities of NC machines make them natural choices for material-processing equipment. Parts must also be moved between processing stations automatically. Several different types of material-handling systems are employed to move these parts from station to station. The selection of the type of material-handling system is a function of several system features. The material-handling system, first, must be able to accommodate the load and bulk of the part and perhaps the part fixture. Large, heavy parts require large , powerful handling systems such as roller conveyors guided vehicles or track-driven vehicle systems. The number of machines to be included in the system and the layout of the machines also present another design consideration. If single material handler must be at least as large as the physical system. A robot is normally only capable of addressing one or two machines and load-and-unload station. A conveyor or automatic guide vehicle(AGV) system can be expanded to include miles of factory floor. The material-handling system must also be capable of moving parts from one machine to another in a timely manner. Machines in the system will be unproductive if they spend much of their time waiting for parts to be delivered by the material handler. If many parts are included in the system and they require frequent visits to machines, then the material-handling system must be capable of supporting these activities. This usually can be accommodated by using either a very fast handling device of by using several devices in parallel, for example, instead of using a single robot to move parts to all the machines in the system, a robot would only support a single machine. 2.1.2 Tooling and fixtures. Versatility is the key to most FMSs, and as such the tooling used in the system must be capable of supporting a variety of products or parts. The use of special forming tools in an FMS is not typical in practice. The contours obtained by using forming tools can usually be obtained through a contour-control NC system and a standard mill. The standard mill then can be used for a variety of parts rather than to produce a single special contour. An economic of the cost and benefits of any special tooling is necessary to determine the best tooling combination. However, because NC machines have a limited of tools that are accessible, very special tools should be included. One of the commonly neglected aspects of an FMS is the fixturing used. Because fixtures are part of the tooling of the system, one could argue that they should also be standard for the system. Work on creating “flexible fixtures” that could be used to support a variety of components has only recently begun. See Chapter 5.One unique aspect of many FMSs is that the part is also moved about the system in the fixture (or pallet fixture). Fixtures are made to the same dimensions so that the material-handling system can be specialized to handle a single geometry. Parts are located precisely on the fixture and moved from one station to another on the fixture. Fixtures of this type are usually called pallet fixtures, or pallets. Many of the pallet fixtures employed today have standard “T-slots” cut in them, and use standard fixture kits to create the part-locating and-holding environment need for machining. 3.COMPUTER CONTROL OF FLEXIBLE MANUFACTURING SYSTEMS 3.1 FMS Architecture An FMS is a complex network of equipment and processes that must be controlled via a computer or network of computers. In order to make the task of controlling an FMS more tractable, the system is usually divided into a task-based hierarchy. One of the standard hierarchies that have evolved is the National Institute of Standards and Technology(NIST) factory-control hierarchy. (NIST was formerly the National Bureau of standards. NBS.) This hierarchy consists of five levels and is illustrated in Figures 2 and Figures 3 The system consists of physical machining equipment at the lowest level of the system. Workstation equipment resides just above the process level and provides integration and interface functions for the equipment. For instance pallet fixtures and programming elements are part of the workstation. The workstation typically provides both man-machine interface as well as machine-part interface. Off- line programming such as APT for NC or AML for robot resides at the workstation level. The cell is the unit in the hierarchy where interaction between machines becomes part of the system. The cell controller provides the interface between the machines and material-handling system. As such ,the cell controller is responsible for sequencing and scheduling parts through the system. At the shop level integration of multiple cells occurs as well as the planning and management of inventory. The Facility Shop Cell Workstation Equipment Information management Manufacturing engineering Production management Task management Resource allocation Batch management Scheduling Dispatching Setup Equipment tasking Takedown Machining Handling Measurement Figure 2 Control hierarchy used by the National Institute of Standards and Tec -hnology. Elements of the data driven c -ontrol function within the NIST Automat -ed Manufacturing Research Facilit(AMRF) architecture: the facility, shop, cell, workstion and equipment levels of control The AMRF Control Hierarchy Fig2 Facility D D A S Shop M D A S D D A S D D A S Cell Integrated Workstation Equipment Equipment B D A S B D A SS A D B S A D B Equipment Equipment S A D D Independent Workstation Current Masters (MDAS) Lengend: Main Network Subnetwork MDAS Control Figure 3 The relationship between the data-administration (DAS) in
展开阅读全文
? 剑锋文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

关于本文
本文标题:0180-大型轴齿轮专用机床设计【全套6张CAD图】
链接地址:/p-19449865.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服点击这里,给剑锋文库发消息,QQ:1290478887 - 联系我们

网站客服QQ:1290478887 ? 剑锋文库用户QQ群:629251935 ? 微信公众号:iwenku365

copyright@ 2017-2027 wenku365.com 网站版权所有 ??聚力网络工作室

经营许可证编号:鄂ICP备17008239号-1?

收起
展开